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The low-pressure heat treatment of metals enables the continuous improvement of the me-
chanical and plastic properties of products, such as hardness, abrasion resistance, etc. A 
significant problem related to the operation of vacuum furnaces for heat treatment is that 
they become unsealed during operation, resulting from the degradation of seals or the ther-
mal expansion of the construction materials. Therefore, research was undertaken to develop 
a prediction model for detecting leaks in vacuum furnaces, the use of which will reduce the 
risk of degradation in the charge being processed. Unique experimental studies were carried 
out to detect leakages in a vacuum pit furnace, simulated using the ENV 116 reference slot. 
As a consequence, a prediction model for the detection of leaks in vacuum furnaces- which 
are used in the heat treatment of metals- was designed, using an artificial neural network. 
(93% for MLP 15-10-1) was developed. The model was implemented in a predictive mainte-
nance system, in a real production company, as an element in the monitoring of the operation 
of vacuum furnaces.
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1. Introduction
Metal heat treatment processes are a very important element of the 
manufacturing processes of products in industries such as the energy, 
automotive, aviation and mining industries etc. The process of hard-
ening, carburising and/or nitriding is often the last process in the pro-
duction cycle and allows the reproducible properties of the processed 
details, such as the surface hardness, core hardness or thickness of 
the diffusion layer to be achieved. The key to obtaining the assumed 
properties of the processed details is to maintain identical conditions 
for the implementation of heat treatment processes in the process 
chamber of the furnace, such as operating pressure, heating time, tem-
perature, amount of technical gas etc. Even a slight change of param-
eters inside the vacuum furnace, during the heat treatment process, 
may result in irreversible damage to the charge and/or to the furnace. 
Both in the energy and mining industries, due to large dimensions 
and high production costs, the value of the charge to the furnace may 
exceed the value of hundreds of thousands of euros. The relevance of 
the problem may be proved by the scope of application of the details 
processed, for example in control systems, gears, heat exchangers in 

aeroplanes and cars, drive shafts for wind turbines, gears with large 
modules, elements of drill bits and cutters in mining machines, drive 
transmission systems, dies, surgical instruments etc.

Low-pressure carbonisation processes are usually carried out 
within temperatures ranging from 950°C to 1020°C at a pressure of 
approximately 5x100 mbar. In the tests conducted, the measured pres-
sure values are given in millibars, where 1mbar = 100 Pa due to the 
use of this unit of measurement in economic practice in the field of 
vacuum technology. In low-pressure carburising processes, it is nec-
essary to maintain the stability of the process, which guarantees ob-
taining a precise and repeatable thickness of the carburised surface 
layer within the specified tolerance range. Possible leaks may result 
in a change in the parameters of the heat treatment process as well as 
damage to the charge, as a result of failing to meet the technological 
requirements expected.

Predictive maintenance is an important component of the Industry 
4.0 Concept, especially when using production resources where fail-
ures do not occur suddenly and the risk of their occurrence increases 
over time. An example of such a progressive failure may be a leak 
in a vacuum furnace. Due to changes in the temperature of the con-
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struction of the furnace chamber and the wear of some elements, such 
as the seal in the furnace cover during operation, the furnace may 
become unsealed. Since modern vacuum furnaces are equipped with 
highly efficient. cascade pumping systems consisting of a mechanical 
pump and a Roots’ pump, pressure build-up in the vacuum furnace 
due to leaks is often virtually unnoticeable. However, as a result of 
leaks, the composition of the atmosphere inside the furnace chamber 
changes, on account of a higher oxygen content, which may lead to 
damage to the charge or failure to achieve the assumed parameters in 
the carburising process and, as a result, not achieving all technological 
requirements. 

The implementation of predictive maintenance methods into indus-
trial practice is one of the key assumptions of the Industry 4.0 Concept 
[13][15]. The progressive automation and digitisation of production 
processes requires the implementation of systems that will enable 
states of emergency to be diagnosed in advance. This approach makes 
it possible to: 

reduce losses associated with damaged parts as a result of fail-•	
ures, 
reduce unplanned downtime,•	
reduce the maintenance costs incurred, regarding specialised, •	
technical personnel, such as automation engineers and mechan-
ics. 

Systems for monitoring the parameters of complex technical sys-
tems are particularly important where these are situated in remote re-
gions of the world and where access to qualified engineering staff is 
limited. Currently, data on monitoring the operational parameters of 
devices is stored in databases of ERP or MES systems. The Industry 
4.0 Concept assumes real-time monitoring and recording of machine 
operating parameters and stores them in the form of big data sets in 
the Cloud. Multi-criteria data analysis with the use of artificial intel-
ligence methods will enable the construction of efficient algorithms 
that will allow failure conditions to be predicted and thus, effectively 
prevented due to the inspection and repair of production resources. 
Research related to the development of the structure of a predictive 
maintenance system, based on the monitoring of real-time data within 
the reference model of industry architecture (RAMI 4.0) and DSR 
(Design Science Research) to reduce costs and operations, were led 
by Sahba et al. [24]. Predictive maintenance models, based on mathe-
matical programming and deep learning allow the technical condition 
of individual elements of the production system to be predicted [12]. 
Machine learning methods based on machine performance analysis 
and monitoring of production environment variables are used in many 
of the studies carried out, in order to predict the emergency conditions 
of production systems [6][5][17][27][29]. A very important aspect of 
the implementation of predictive maintenance into industrial practice, 
is the analysis of big data sets, based on computationally efficient 
algorithms [31]. Another approach involves the construction of math-
ematical models to calculate maintenance rates for any schedule of 
time up to failure [20]. An important issue regarding maintenance 
management, based on prediction methods, is an approach based on 
multi-criteria decision making, integrated with the traditional method 
of analysing failure mode, effects, and criticality (FMECA) [1].

Low-pressure carburising is a long-lasting and energy-consuming 
heat treatment process, especially considering its requirement to ob-
tain thick carburising layers, i.e., over 2.00 mm. One of the important 
parameters that influence the stability and repeatability of the process 
is the low oxygen content in the vacuum furnace chamber. The most 
common cause of the deterioration of this parameter is a leak in the 
furnace, which results in air entering the furnace chamber. The is-
sue of leakage, in devices operating in high vacuum conditions is an 
important area of research and the subject of scientific publications 
[4] [9]. There are many methods for testing the leakage of vacuum 
devices, such as the pressure increase or decrease test, the leak test 
with gas-sensitive vacuum gauges, the test by immersion in various 
formulations or spraying with foam, the Krypton 85 test, the high fre-

quency vacuum test, test with chemical reactions and dye penetra-
tion [21]. An important method for testing the tightness of techni-
cal objects is the tracer gas method. The most popular tracing gases 
are helium, ammonia, hydrogen, nitrogen and semi-precious gases. 
A commonly used method of leak detection is the helium method, 
so-called [13] [28]. Helium is very well suited to the leak detection 
of vacuum devices because it is a non-toxic, non-flammable gas and 
does not form explosive mixtures with other gases. It is also neutral 
to the environment and does not enter into chemical reactions with 
other substances. The use of helium is not limited by the range of 
temperatures or pressures as it is a very temperature stable gas, which 
facilitates the testing of objects in environments with extremely high 
or low temperatures. Helium is the gas- right after hydrogen- with the 
smallest unit particle which enables penetration of micro-fractures in 
materials, therefore helium tests are very accurate. The relatively low 
price of helium compared to other noble gases should also be noted. 
The method itself is relatively simple and consists in connecting a 
so-called helium detector to the object being studied, while the opera-
tor dispenses a small portion of helium to any possible leak. The test 
object must reach a high, negative pressure.  The method requires a 
detector with high accuracy, viz., the detection of leaks at the level of 
5x10-12 mbar l/s. When using a helium detector, it is also possible to 
approximate the location of the leak. Another method for detecting 
leaks in vacuum furnaces is the so-called infiltration method, which 
consists in heating the furnace to a certain temperature at a specific 
negative pressure - usually as low a pressure as possible and then, as 
it slowly cools, calculate the value of the infiltration, i.e., the decrease 
in the value of the vacuum level, within a specific timeframe. The 
infiltration testing process allows leaks to be detected, however, it is 
long-lasting (several hours to several dozen hours) and does not allow 
the leak to be located. In general, the leak test should be preceded by 
the identification of possible leaks using the helium method. 

Based on an analysis of the results of the literature on the subject, 
the infiltration method was selected for detecting leaks in vacuum fur-
naces with experimental tests being carried out to analyse leakages in 
pit furnaces for specific settings of the ENV 116 standard slot.

The use of various tools such as the Markov Process, Bays Net-
works, artificial neural networks or simulation methods, based on the 
Monte Carlo method for predictive maintenance purposes, has been 
the subject of publications by many authors [7][25]. Predictive main-
tenance methods use the Markov Process, Bays Networks, artificial 
neural networks and simulation methods based, for example, on the 
Monte Carlo method.

Many publications cover the use of machine learning methods for 
predictive maintenance, based on an analysis of machine perform-
ance and the variables of the production environment [5][17][27]. 
Part of the research concerns the acquisition and storage of data in 
the Cloud and the construction of a system platform for predictive 
maintenance [26]. Artificial neural networks are used, among other 
things, in order to analyse and classify data, both current and forecast, 
with the help of in-depth learning techniques and will enable images 
to be both recognised and reproduced. In the maintenance department, 
models are expected for detecting and forecasting future failures, in 
real time. [3] Based on an analysis of the literature, the most popular 
data-driven decision methods include the Support Vector Machine 
(SVM), Principal Component Analysis (PCA), Linear Discriminant 
Analysis (LDA), Random Forest, K-Nearest Neighbours and the Hid-
den Markov Model [22]. Currently, many methods, techniques and 
procedures, using intelligent production systems for maintenance 
workers, are based on deep learning techniques [17][32], however, 
there are still good examples of the use of artificial neural networks in 
maintenance, in the monitoring of tool wear, in the diagnosis of vibra-
tion in machining systems, in the thermal analysis of machines, in the 
analysis of other malfunctions affecting production, as well as in the 
diagnostics of finished products [9].
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In the literature on the subject analysed, no model was found that 
could be used to predict the detection of leaks in devices used in the 
low-pressure heat treatment of metals. Therefore, research work was 
undertaken to design an effective leak detection model in vacuum 
furnaces, based on data obtained from the study of a working pit fur-
nace.

The article presents the stages of a research experiment concerning 
the analysis of leaks with the use of a standard slot for various pres-
sure and temperature parameters. Based on an analysis of the results 
of the experimental studies, a model for detecting leaks predictively, 
using artificial neural networks, was designed. 

2. Research methods 

2.1.	 Experimental work- testing furnace tightness- based on 
an analysis of the infiltration 

The infiltration test is an effective, but relatively time-consuming 
method for obtaining knowledge about leakage in vacuum furnaces. 
The procedure for testing the tightness of the pit furnace, using the 
infiltration method, is shown in Figure 1. 

Fig. 1.	 The procedure for testing a leaking pit furnace, using the infiltration 
method

The longest stage in the infiltration test procedure here presented, 
is the cooling down of the furnace to a temperature of 50°C. Depend-
ing on the design of the furnace, that is, regarding the thickness of the 
insulation and the size of the heating chamber etc., the furnace cool-
ing down process may take from several hours to several dozen hours. 
The control calculations for the infiltration test are performed, based 
on formula (1) shown below:
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where
N - (leak rate) [mbar* l/s]
V 	 – volume of the furnace heating chamber [l]
Pb 	– initial pressure [mbar],
Pe 	– final pressure [mbar],
Tb 	– initial temperature [°C],
Te 	– final temperature [°C],
t 	 – time [min]. 

The criterion for the tightness of the device, vis-à-vis the infiltra-
tion test, was set at 5,0 10-3 [mbar·l/s]. 

Table 1 shows examples of the results of the pit furnace infiltration 
test wherein a leak was detected. 

The results presented in Table 1 differ many times from the cri-
terion adopted, therefore the device tested shows increased leakage. 
After a review of the structure of the device and replacement of the 
valves, the infiltration test was carried out again. The test was per-
formed with a slightly higher final temperature. The results are pre-
sented in Table 2. 

As can be seen from the data presented in Table 2, the minimum in-
dicator, adopted and established for the infiltration test, was exceeded 
over 100 times, thus indicating a leaking device. After re-analysis of 
tightness with the use of a helium detector and the sealing of the struc-
tural elements having been replaced, the infiltration test was carried 
out again; this gave satisfactory results. Table 3 presents the results of 
an infiltration test for a furnace which meets the criteria for leakages. 

According to the analysis of the infiltration tests carried out, the 
method is not only effective, but is also long-lasting and may require 
several repetitions in the case of unsatisfactory results. In production 
conditions, it is also quite expensive, because it requires shutting down 
the heat treatment device for several hours. These devices are heavily 
loaded with orders in most enterprises and constitute bottlenecks in 
the manufacturing process. It is very important that, before starting 
an infiltration test, a helium test is carried out, in order to eliminate 
possible leakage in the device. Due to the specific features of the infil-
tration test, i.e., its long duration, furnace shutdown and high energy 
costs, this method cannot be used for a maintenance predictive sys-
tem. Therefore, research work was undertaken to design a pit furnace 
leakage prediction model, using artificial neural networks. 

2.2.	 Data collection and analysis
The Lambda probe is a sensor commonly used in the automotive 
industry to analyse the oxygen content in exhaust gas. The voltage 
generated by the sensor is lower than the higher oxygen content in 
exhaust gas, while the small amount of oxygen ions in the exhaust 
gas generates high voltage. To test for leakages in a pit furnace, the 
standard EVN116 slot (gas dosing valve) was used, which enables 

Table 1. Examples of the results of the first infiltration test for a leaky vacuum furnace. 

V t Pb Pe Tb Te N

[l] [s] [mbar] [mbar] [°C] [°C] 10-3 [mbar·l/s]

1308 3600 1.40 4.06 42 42 967.83

1308 7200 1.40 6.87 42 41 995.00

1308 10800 1.40 9.79 42 41 1018.07

1308 14400 1.40 12.79 42 40 1037.80

1308 18000 1.40 25.12 42 39 1082.99

1308 21600 1.40 49.51 42 36 1102,87

1308 25200 1.40 74.52 42 34 1121.14
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the leak rate to be determined manually. Figure 2 shows the test site 
(Figure 2). 

As can be seen from the characteristics presented, setting the slot 
to 100 results in a horizontal leak at a level of 0.5·10-3 mbar·l/s, but 
when the slot is set to 200, the leak is at a level of 0.8·10-3 mbar * l/s. 
The test programme included an analysis of the characteristics of 
changes in the Lambda probe indications, depending on the size of 
the reference gap for different temperatures in the heating of the pit 
furnace. The following activities were planned for the purpose of con-
ducting research experiments:

setting a specific leakage for the reference slot, without opening •	
the slot,

setting the maximum heating temperature T•	 max,
creating a vacuum in the furnace at the P•	 min level,
heating the furnace to temperature T•	 max with the pump run- 

	 ning,
keeping T•	 max for 15 min with the pump running,
closing the pump shut-off valve and turning the pump off,•	
opening reference slot t•	 1,
closing reference slot t•	 2,
turning the furnace off. •	

The tests were carried out at different heating temperatures: 
500°C (loading the charge), 800°C (near temperature for harden-
ing) and 1000°C (vacuum carburisation temperature). Figure 3 
shows the temperature diagrams and the pressure and Lambda 

probe readings during heating to a temperature of 500°C, with 
the vacuum pump working, in order to determine the refer-
ence characteristics of the Lambda probe for a tight furnace. 
The furnace was started at 7:20 a.m. at a temperature of 28°C; 

the target temperature of 500°C was reached after 60 minutes. The 
heating ramp was approximately 8°C/min. The vacuum in the furnace 
chamber was 7·10-3 mbar. As can be seen from the diagram of the 
Lambda probe readings, taken during pumping out the furnace, the 
amount of oxygen ions in the furnace atmosphere decreased, which 
resulted in an increase in the voltage to approximately 880 mV. 

Experiments at the test site (Figure 2) were then carried out. They 
simulated furnace leaks, with the standard slots set to 100, 150, 200 
and 250, respectively, according to the characteristics of the EVN 116 

Table 2.	 Examples of the results of the second infiltration test for a leaky vacuum furnace

V t Pb Pe Tb Te N

[l] [s] [mbar] [mbar] [oC] [oC] 10-3 [mbar·l/s]

1308 3600 1.46 2.85 76 75 504.47

1308 7200 1.46 4.35 75 74 525.88

1308 10800 1.46 5.90 74 72 538.53

1308 14400 1.46 7.42 72 71 542.02

1308 18000 1.46 8.91 71 70 542.51

1308 21600 1.46 10.36 70 69 539.76

1308 25200 1.46 11.80 69 68 537.59

1308 28800 1.46 13.17 68 67 532.93

1308 57600 1.46 23.01 67 58 495.93

1308 86400 1.46 31.70 58 52 462.59

Table 3.	 The results of the infiltration test for a furnace with a tight vacuum

V t Pb Pe Tb Te N

[l] [s] [mbar] [mbar] [oC] [oC] 10-3 [mbar·l/s]

1308 3600 0.238696 0.244000 43 43 2.00

1308 7200 0.238696 0.249304 43 42 1.98

1308 10800 0.238696 0.255091 43 42 2.04

1308 14400 0.238696 0.259913 43 42 1.98

1308 18000 0.238696 0.265700 43 41 2.02

1308 21600 0.238696 0.271004 43 41 2.01

1308 25200 0.238696 0.276308 43 41 2.01

1308 28800 0.238696 0.282095 43 40 2.03

1308 57600 0.238696 0.287399 43 40 2.03

1308 86400 0.238696 0.292704 43 40 2.02

Fig. 2. Test stand for testing vacuum furnace leakage
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standard slot in which the numerical codes of the manual setting of the 
standard slot correspond to the specified leak (the so-called “digital 
display”, Figure 4), in the leakage range from approximately 10-3 do 
10-2 mbar·l/s. 

Figure 4. Characteristics of EVN 116 standard slot [33]

Changes in the furnace pressure for the individual settings of the 
reference slot and simulated voltage, as well as for the Lambda sensor 
readings are shown in Figure 5. As can be seen from the diagram pre-
sented, differences in the Lambda sensor readings for different sizes 
of the device leak are already visible 30 minutes after the opening of 
the standard slot. Table 4 shows the values of pressure and indications 
of the Lambda probe, which were recorded at equal intervals every 30 
minutes, after opening the reference slot. Based on the data presented 
in Table 4, it is possible to diagnose any leakage in the device after 30 
minutes and determine its size. 

Analysis of the data obtained as a result of the 
conducted experimental tests (Table 4) shows 
that for increasingly larger leaks in the ENV 116 
slot, the Lambda probe generates a correspond-
ingly lower voltage. 

The data received in the form of 1600 
measurements concerning parameter values: 
y - Lambda probe voltage, x1 - temperature in 
the Furnace chamber, x2 - working pressure in 
the furnace chamber (values in bar), x3 - hous-
ing temperature, x4 – water flow in the cooling 
system, x5 - insulation temperature 1, x6 - in-
sulation temperature 2, x7 – water flow in the 
cooling system of current passages, x8 - insula-
tion temperature 3, x9 - water temperature at the 
inlet of the cooling system, x10 - gas pressure 
of the pneumatic system, X11 - temperature of 
the current bushing, X12 - heater current 1, x13 
- heater current 2, X14 - heater current 3, x15 - 
partial pressure in the furnace chamber (values 
in millibars) constituted the basis for building a 
leak detection prediction model in vacuum fur-
naces using artificial neural networks.

3. Test results
The basic element of artificial neural net-

works are neurons, each of which is an autono-
mous processing unit. Each neuron carries out 
its own simple calculations and the structure, 
consisting of a large number of neurons, facili-
tates the multiplication potential of these calcu-
lations. The task of the neurons is to operate on 
the input data and present the results computed 
by the function activation. The neuron also de-
scribes a bias, which is an element that models 

the threshold above which the neuron sends an impulse, that is, an 
adjustment of the activation threshold value. The artificial neural net-
work thus designed has parameters (weights) that must be assigned 
initial values. The role of the activation function is to determine the 
degree of excitation of the neuron, on the basis of the values reach-
ing it. Based on the function used, the output value of the neurons is 
calculated. 

The model was built using an artificial neural network due to its 
utility in both reactive and preventive maintenance as well as predic-
tive maintenance. The model was designed on the basis of real data 
obtained from the operation of a vacuum furnace. An artificial neural 
network was chosen because using it facilitates, among other things, 
data classification and identification, the forecasting of wear in ma-
chine elements [9], the forecasting of the abrasive wear of cutting 
tool blades and the monitoring of machines and devices in action. The 
ANN type of unidirectional MLP multilayer neural network was se-
lected (Multi-layered Perceptron) [23]. The network consists of neu-

Table 4.	 Lambda probe indications [mV] for various ENV 116 slot leaks 

  digital display

time 100 150 200 250

00:00 835 826 818 813

00:30 840 831 822 809

01:00 844 835 824 806

01:30 849 839 826 802

02:00 852 842 828 799

02:30 855 842 828 795

b)

a)

c)

Fig. 3.	 Changes in a) temperature in the furnace chamber, b) pressure, c) voltage of the Lambda probe for 
a tight furnace
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rons arranged in layers. Each of the neurons computes the weighted 
sum of its inputs; the excitation level thus determined becomes an 
argument for the transition function (activation function) that com-
putes the output value of the neuron. For a unidirectional multilayer 
network, determining the appropriate number of hidden layers and the 
number of neurons in individual layers is not a simple issue. [2]. 

In order to build the model, an artificial neural network with a lo-
gistic activation function, a sigmoid unipolar function (formula 2) was 
used, due to the form of data on the Lambda probe indication for a 
tight furnace (Figure 3c). 

	 ( ) x
1x

1 e−
=

+
	 (2)

where: x  – is the input value of the activation function, e  - Euler’s 
number. The activation function is especially useful in artificial neu-
ral networks with back propagation. The function maps the interval 
( ),∞ ∞−  to ( )0,1  [19].

The weighting factors were determined in the process of training 
neurons through supervised learning. To generate a neural network 
Statistica, ver. 13.3 was used. The neural network model used in the 
study is shown in Figure 6.

where:

w1…w15 - weights 
Y -Lambda probe measurement value

Table 5 compares the MLP network, with the 
activation logistics function, in terms of the net-
work quality achieved, for training, testing and 
validation, respectively and the error function. 
The best model was the MLP network with the 
structure 15‒10‒1, where 15-10-1 refers to the 
number of inputs (15), the number of neurons in 
the hidden layer (10) and the number of output 
networks (1).

The leak detection prediction model in vac-
uum furnaces was then verified with the use of 
ANN MLP 15-10-1 for the data presented in 
Appendix no. 1. Tests were carried out while the 
vacuum furnace was working and the actual re-
sults were compared with the forecast obtained 
(Table 6).

In Figure 7 a prediction model for the detec-
tion of leaks, in devices for the heat treatment of 
metals, has been presented. 

4. Discussion
The aim of the study was to formulate a pre-

diction model for detecting leaks in vacuum fur-
naces using artificial neural networks. The re-
search required experiments to be conducted on 
a vacuum furnace in actual operation, followed 
by work related to the acquisition and analysis 
of data and the use of an appropriate ANN struc-
ture. The research was conducted in the R&D 
Department of SECO/WARWICK S.A. using a 

pit vacuum furnace. Table 7 presents the main characteristics indicat-
ing the originality of the research results obtained and the contribution 
made to the research on leakage in vacuum furnaces. In particular, 
the approaches to the detection of furnace leakages were described, 
taking into account: (1) the methods used, (2) effectiveness, (3) veri-
fication in business practice. According to the present authors’ knowl-
edge, there is no approach, in existing studies, integrating the results 
of experimental work on the detection of leaks in a pit furnace using 
the ENV 116 reference slot with the use of artificial neural networks. 

Technical devices that work in high vacuum conditions and are 
subjected to large temperature changes, become unsealed after a cer-
tain period of time. This can be due to various reasons, such as seal 
wear, damaged valves, leaks due to expansion and contraction of the 
metal parts of the furnace etc. Leaks can occur suddenly, as a result of 
a fault, or gradually, as a result of the normal operation of equipment. 
It is possible to prevent gradual leakage of the heat treatment device 
by continuously monitoring selected parameters. As currently used, 
pumping systems for obtaining a high vacuum in furnace chambers 
are very efficient, therefore the occurrence of even a large leak may 
not be registered by the pressure sensors. Due to the economics of heat 
treatment processes and for the avoidance of damage to the charge, 
it is important that the prediction of potential leakage occurs before 

actual treatment is required, such as carburising or quenching, 
so that the charge is not degraded.  This can be achieved by us-
ing artificial intelligence methods. The study demonstrated the 
usefulness of an artificial neural network and its effectiveness in 
supporting the prognosis of furnace leakage (93% for MLP 15-
10-1). The model designed for the detection of leaks in vacuum 
furnaces (Figure 6) can be integrated in systems supporting the 
operation of the maintenance department.  Such adaptation can 
even be done online, if all the features / input values taken into 
account can be changed and controlled online. 

Fig. 5. Changes in the readings of the pressure sensor and the Lambda sensor for different levels 

Fig. 6. MLP network structure for leak detection prediction in vacuum furnaces.

b)

a)
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5. Summary and conclusions
The low-pressure heat treatment of metals is most often carried 

out in the last phase of a production cycle. Inadequate heat treatment 
parameters, such as too much oxygen in the furnace chamber or too 
high a pressure, caused by leaks in the furnace, may lead to produc-
tion shortages or the production of products with lower strength and 
reliability. Leakage in heat treatment equipment cannot be completely 
eliminated as it is process-specific, vis-à-vis the thermal expansion of 
metals, damage to the seal resulting from the operation of the furnace 
etc. 

The article proposes a model for predictively detecting leaks 
in vacuum furnaces with the use of artificial neural networks.  
As a result of the experimental tests conducted, consisting in 
simulating the leakage, the Lambda sensor readings were deter-
mined for various settings of the standard slot size. The predic-
tion model formulated for the detection of leaks in vacuum fur-
naces, as used in the heat treatment of metals using an artificial 
neural network (93% for MLP 15-10-1) will allow leakage in 
the heat treatment equipment of metals- already in the heating 
phase- to be detected before the start of the carbonisation or 
hardening processes, thus protecting the load against damage. 

As part of further research and development work on the pre-
dictive maintenance of metal heat treatment devices, work will 
be carried out on detecting the conditions preceding burnout of 
the furnace heating elements, resulting from an increase in the 
level of carbon deposits on the heating elements and current 
passages and from low-pressure carburising processes. 
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Table 5.	 Artificial neural networks for leak detection in a vacuum furnace

Network name Quality 
(learning)

Quality (test-
ing)

Quality (vali-
dation)

Error 
(learning)

Error (test-
ing)

Error (vali-
dation)

Learning 
algorithm

Error 
function

MLP 15-7-1 0.980799 0.751166 0.828486 177.310 158.8133 86.2470 BFGS 40 SOS

MLP 15-10-1 0.983770 0.751710 0.933961 184.058 245.6714 174.4568 BFGS 42 SOS

MLP 15-12-1 0.563121 0.462774 0.514705 3191.967 399.8066 433.7868 BFGS 4 SOS

MLP 15-14-1 0.966649 0.571415 0.575219 308.369 256.8963 249.1537 BFGS 48 SOS

MLP 15-13-1 0.973078 0.568790 0.681975 249.102 304.1500 156.2498 BFGS 41 SOS

Table 6.	 Comparison of actual values with the values forecast for leakages in a vacuum furnace

Time  Lambda probe voltage - actual value 
[mV]

Lambda probe voltage – forecast 
value [mV] Error

15:45:00 727,2063 793,5139 -66,3076

16:00:00 743,9453 795,6114 -51,6661

16:15:00 755,042 793,7966 -38,7546

16:30:00 763,1294 792,5906 -29,4612

16:45:00 769,8062 793,7554 -23,9492

17:00:00 775,2605 792,3767 -17,1162

17:15:00 779,8684 794,0572 -14,1888

17:30:00 783,9121 794,9163 -11,0042

Fig. 7. Prediction model for detecting leaks in vacuum furnaces
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